
Turbocharging Solution Concepts: Solving NEs, CEs and
CCEs with Neural Equilibrium Solvers
Luke Marris, Ian Gemp, Thomas Anthony, Andrea Tacchetti, Siqi Liu, Karl Tuyls

Equivariant Architecture
There are many equivariances in the representation of normal-form games.
Equivariances are transforms to the payoffs that change the equilibrium in a
predictable way. Two such equivariances:

1. Permutation of actions in a payoff results in the same permutation in joint.
2. Permutation of players in a payoff results in the same transposition in joint.

We can exploit these equivariances by building them into the architecture of the
neural network. We use a channel dimension and pooling functions to achieve this
(see paper for details). This has three benefits:

1. Reduces the number of parameters required the network requires
2. Equivariant games give consistent results
3. Each sample is equivalent to training over all permutations

As games get larger, the number of permutations grows rapidly: N! (|Ap|!)
N

Action permutation equivariance: Player permutation equivariance:

Dual Space Optimization

Invariant Preprocessing and Sampling
Payoffs, Gp(a) ⊂ (-∞, +∞), can be any finite real number. It is impossible to uniformly
sample from this full space. And a non-uniform sample would bias a network.
Invariances are transforms to payoffs that do not change the space of equilibria.
Two such invariances are:

● Offset of each player’s payoff
● Positive scale of each player’s payoff

We can use these invariances (e.g. zero-mean offset, unit-norm scale) to map the
space of payoffs to a smaller invariant subspace. Benefits:

● Now possible to uniformly sample over this subspace.
● Neural network does not need to learn redundancies in scale and offset.

Equilibrium Definitions
CE:

CCE:

Unique Solution
In general, there are many possible equilibria for games. Many solvers simply find
any equilibrium, or any from a set according to some objective. Our method solves
for a unique equilibrium by mixing between a number of convex parameterisable
equilibrium selection criterion:

1. Linear welfare maximization.
2. Distance to an arbitrary target joint distribution.
3. Target equilibrium approximation parameter.

Benefits:

● Better optimization landscape
● Unique equilibrium selection

Dual Loss Function
Loss:

Logits:

Primals:

Problem and Niche
Value-based methods such as Nash Q-Learning and Correlated Q-Learning solve
for subgame-perfect equilibria in terminating Markov Games. These approaches
involve estimating action values (equivalent to a normal-form games, or payoffs
Gp(a)) at each state. In these algorithms, equilibria have to be recomputed:

1. Each time the action-values are updated
2. For continuous or large state space, each time an action is taken

These solutions need to be solved frequently. However, not necessarily to high
accuracy. Traditional iterative equilibrium solvers are accurate, but take a relatively
long and nondeterministic amount of time to converge, and may fail on
ill-conditioned games.

The niche: fast, deterministic, approximate solvers.

The Goal: Train a feedforward neural network to map payoffs directly to equilibrium
solutions. Gp(a) → 𝜎(a)

Unsupervised Loss
Traditionally, neural networks are trained in a supervised fashion. For example with
(input (Gp(a)), truth (𝜎*(a))) pairs. This is prohibitive because solving for the truth
requires running expensive iterative solvers (discussed earlier). We formulate an
unsupervised loss function that does require ground truth targets to be trained.
Loss and gradients can be computed just from sampling inputs. Benefits:

● Infinite training regime (no pre-computed dataset)
● Training data can be sampled online and on-device
● Very fast training loop

Architecture

CE primal problem:

● Primal variables: AN

● Linear constraints: NA2

● Nonnegative constraints: AN

● Equality constraints: 1
● Objective: min-max

CCE primal problem:

● Primal variables: AN

● Linear constraints: NA
● Nonnegative constraints: AN

● Equality constraints: 1
● Objective: min-max

CE dual problem:

● Dual variables: NA2

● Linear constraints: 0
● Nonnegative constraints: NA2

● Equality constraints: 0
● Objective: loss

CCE dual problem:

● Dual variables: NA
● Linear constraints: 0
● Nonnegative constraints: NA
● Equality constraints: 0
● Objective: loss

G1(a)

𝜎(a)
G2(a)

G1(a)

𝜎(a)G2(a)

